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SUMMARY

This report describes the investigation of a new method for recovering

diffraction-limited images through the turbulent atmosphere. The method con-

sists of an iterative algorithm that constructs an image from Fourier modulus

data which is measured by stellar speckle interferometry. The results of

this research indicate that the method has the potential for providing dif-

fraction-limited images of earth-orbiting satellites.

Image construction experiments were performed on Fourier modulus data

computer-simulated to include the effects of atmospheric turbulence, dif-

fraction, photon (Poisson statistics) noise, and a finite number of short-

exposure images. The quality of the constructed images was found to degrade

in a gradual and predictable manner as the signal-to-noise ratio decreases.

The rms error of the constructed images was found to vary approximately as

the square root of the rms error of the Fourier modulus data. Diffraction-

limited images were constructed for levels of photon noise that would be ex-

pected for imaging satellites through a 1.6-meter telescope.

Image construction experiments were peformed on the Fourier modulus of a

number of different objects of varying complexity. Interpretation of the

results was complicated by a tendency of the algorithm to staqnate at local

minimum having the appearance of a good quality image superimposed by a pat-

tern of stripes. Nevertheless, the results were suggestive that the solution

is usually unique; only for an object satisfying special conditions is the

Fourier modulus ambiguous. As the signal-to-noise ratio decreases, the am-

biguity of the solution increases, but that ambiguity takes the form of noise

in the constructed image rather than a complete change in the basic shape of

the image.

Several variations of the algorithm were compared, and one was found to

converge considerably faster than the others. The convergence time was

longer for objects of greater complexity. For an array size of 128 x 128

pixels, typically one hundred iterations are required, taking about two

minutes on an array processor.
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FOURIER MODULUS IMAGE CONSTRUCTION

INTRODUCTION

The purpose of this research project is to investigate the effectiveness

of a new method of recovering fine resolution imagery through the turbulent

atmosphere.

Ordinarily, atmospheric turbulence limits the rcsolution of an image ob-

tained through a large optical telescope to about one second of arc at best,

which corresponds to the diffraction limit of an optical telescope of aper-

ture 10 an. By comparison, the theoretical diffraction-limited resolution

of a 2-meter telescope with no atmospheric turbulence is 0.05 arc-seconds --

20 times finer. Compensated imaging (real-time correction of atmospheric

turbulence-induced phase errors by adaptive optics) can produce diffraction-

limited images, but the system is expensive. An inexpensive alternative ap-

proach is to gather fine resolution information by stellar speckle inter-

ferometry [l, and then process that information to form an image. The in-

formation obtained from speckle interferometry is the modulus of the object's

Fourier transform, or equivalently the autocorrelation of the object. An
image can be constructed from this information using an iterative algorithm

[2]. The imagery thus obtained would have diffraction-limited resolution.

This research project had three major goals: (1) to determine how the

quality of the constructed images varied with the signal-to-noise ratio of

the Fourier modulus data; (2) to determine whether the algorithm could pro-

duce spurious results (that is, whether the constructed image is unique);

and (3) to investigate changes in the algorithm to improve convergence of
the algorithm and to determine how the convergence time varies with the pro-

perties of the Fourier modulus data. Section 2 of this report gives back-
ground to the iterative algorithm. Sections 3 through 5, respectively, de-

scribe the results relating to the three goals listed above. Section 6 sum-

marizes the conclusions and outlines areas where further work is needed.

Appendix A contains a proof of convergence for one version of the iterative

algorithm.
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2
ITERATIVE METHOD BACKGROUND

This section briefly describes the iterative method, which is discussed

in more detail elsewhere [2, 3] and in Section 5. Since the experiments were

performed on a digital computer, the object and its Fourier transform are

sampled functions. Throughout this report, the convention is used that

functions represented by upper case letters are the Fourier transforms of

functions represented by lower case letters.

Let the object distribution be fmn and its discrete Fourier transform

be

Fpq IF exp(i pq) = [f mn] = fmn exp[-j(2w/N)(mp + nq)] (1)

mn

where m, n, p, and q a 0, 1, 2, . .. , N - 1. m and n are referred to as

spatial coordinates and p and q as spatial frequency coordinates. The object

brightness distribution fmn is real and nonnegative and Fpq is Hermi-

tian. We assume that only IFpqI is measured, although in some cases of
practical interest apq may be measurable for very low spatial frequen-

cies. The diameter of the object can be computed since it is half the diam-

eter of the autocorrelation f * f *-- 1 [JFpq 2]. The problem is to

reconstruct the object fmn' or equivalently the phase apq, from IFpq

consistent with the fact that fmn >- 0. Use of the constraint of the ob-
ject's computed diameter is not essential, since any nonnegative solution

having a Fourier modulus I Fpq lautomatically has the correct diameter.

A block diagram of the iterative method is depicted in Figure la. The

four steps of each iteration are as follows. (1) An input image gmn

(which in some instances may be considered an estimate of the object) is

Fourier transformed:

Gpq = GpqJ exp(i~pq) drrgmn

10
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Figure 1. (A) Block diagram of the iterative method;
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(2) The result is made to satisfy the measured Fourier modulus and the com-

puted phase is left unchanged:

p q =FpqJ exp(iOpq)

(3) The result is inverse Fourier transform:

gmnn v -I [G;,]

(4) Based on how g'mn violates the object-domain constraints, a new input

gmn is formed, and the process is repeated.

Taken together as a group, the first three steps can be viewed as a non-

linear system having an input gmn and an output g'mn as depicted in

Figure lb. The output g'mn is guaranteed to have a Fourier transform with

the measured modulus. Therefore, if g' mn is nonnegative, then it is a so-

lution to the problem; that is, it simultaneously agrees with the measured

data in the Fourier domain and the a priori nonnegativity constraint in the
image (or object) domain. The procedure is to iteratively change the input

in such a way as to drive the output to be everywhere nonneqative. Driving

the output to be zero outside the computed diameter may also be included;

imposition of the diameter constraint is not essential, but it decreases the

convergence time of the algorithm.

The iterative method embraces a family of algorithms for altering the

input in order to drive the output to satisfy the object-domain constraints.

Two such methods of altering the input that were used for the experiments
reported here are given by

gk,mn' (m,n) 4 y

gk+l,mn = (2)

0 ,(m,n) c y

and

gk~mn , (m,n)4 y

i ~gk+l ,mn = (3

gk,mn n- mn (m,n) c y

12



where gk,mn and g'kmn are the input and output, respectively, at the

kth iteration, y is the set of points at which 'k,mnviolates the con-

straints, and o is a constant. We refer to the iterative method using Eq.

(2) as the error-reduction approach, since it can be shown that the mean-

squared error defined in the Fourier domain by

2 P IG pq - Fpq 2
E p q (4)

E F 2
pq

or in the image domain by

E gmn I'
E2 mncy

mny (5)

can only decrease at each iteration. The proof of convergence is given in

Appendix A. These two error measures indicate the degree to which the solu-

tion agrees with the measured Fourier modulus. Unfortunately, the fractional

decrease of the error becomes very small as the iterations progress, and the

error-reduction approach usually does not converge to a solution in a prac-

tical sense.

An important notion that is used in Eq. (3) and other related methods of

altering the input is that a change of the input tends to result in a similar

(but somewhat different) change of the output [41. We refer to these methods

of altering the input as the input-output approach. Although the mean-

squared error does not necessarily decrease at each iteration (it may even

increase), in practice the input-output approach converges much faster than

the error-reduction approach. The optimum choice of the constant a in Eq.

(3) depends on the statistics of Gpq and Fpq. We have found values of B

between 0.5 and 1.0 to work well. The input-output approach can be used by

itself, or it can be alternated with the error-reduction approach. For the

results shown in Sections 3 and 4, we alternated between Eq. (2) and Eq. (3),

typically performing thirty to sixty iterations using Eq. (3) followed by

ten iterations using Eq. (2).

13



The region y in Eqs. (2) and (3) includes all points at which g'k,mn

violates the object-domain constraints. The primary constraint is that the

image be nonnegative. Another constraint that may be imposed is that the

diameter of the image not exceed half the diameter of the autocorrelation.

For the set of experiments described in Sections 3 and 4, we applied a tight

diameter constraint for the first few iterations, but only constrained the

image to half the field-of-view (and the images always fit within less than

half the field-of-view) in each dimension for the bulk of the iterations.

As mentioned earlier, the diameter constraint is not essential, since

all real, nonnegative solutions automatically have the correct diameter (half

the diameter of the autocorrelation). However, during the iterations the

intermediate results (the output images g') do have a diameter exceeding the

known diameter, and by applying the diameter constraint the convergence time

of the algorithm is decreased. That g' can have a diameter greater than half

the diameter of the autocorrelation can be seen from the following example.

Suppose that for a given iteration the input g is nonnegative and has the

correct diameter, but has an incorrect Fourier modulus. After Fourier trans-

formation, its Fourier transform G is modified to satisfy the measured

Fourier modulus, IFj, which we will assume is exactly the Fourier modulus of

the object. Neglecting the case where IGI . 0 (it is almost never exactly

equal to zero, due to noise, etc), this can be accomplished by multiplying G

by IFI/IGI,
/IFol

Gpq- wGpq Gq

By the convolution theorem the resulting output image can be expressed as

In general the Fourier transform of (IFI/IGI) will have positive and negative

sidelobes that extend over the entire field-of-view. Therefore g' will

contain areas of positive and negative values that extend beyond half the

diameter of the autocorrelation. Nevertheless g' and the object must have

14
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identical autocorrelations: since IGI - IFI, g'* g'- '-'IG'I 2 ]

t'-l[IF! 2 ] - f * f. The diameter of g' can exceed half the diameter of

the autocorrelation only if g' has regions of negative value, since negative

values are required to get the cancellation needed to reduce the diameter of

the autocorrelation to less than twice the diameter of g'.

15



3
NOISE PROPERTIES OF IMAGES CONSTRUCTED FROM FOURIER MODULUS

This section describes a set of experiments aimed at determining how the

quality of the constructed images depends on the amount of noise present in

the -ured Fourier modulus data. Noisy Fourier modulus data was simulated

having predetermined amounts of noise, images were constructed from the noisy

Fourier modulus data, and a measure was made of the quality of the con-

structed images.

3.1 SIMULATION OF NOISY FOURIER MODULUS DATA

The Fourier modulus data used for the reconstruction experiments was

simulated to include the effects of atmospheric turbulence and photon noise.

The object used (a digitized photograph of a P72-2 sensor testbed) is shown

in Figure 2, as it would appear through a diffraction-limited telescope with

no atmospheric turbulence and no noise. The object is about 64 x 40 pixels

in extent, imbedded in a 128 x 128 array. The object fmn was convolved

with 156 different point-spread functions (PSFs) to produce 156 different

blurred images

d(k). fmn* s a 1Fp S( k )j k = 1, ... , 156 (6)mnmn mn '47 1 "" "']

where s(k) is the kth PSF. The object and the PSFs were supplied by
mn

B. L. McGlamery (Visibility Laboratory, Scripps Institution of Oceanography,

U.C. San Diego) and were computed from phase functions representing the ef-

fects of a model of atmospheric turbulence having a Kolmogorov spectrum [5],

assuming a telescope lens diameter of 1.6 meters and r o (Fried's parameter0 (kar shw in"
[6]) = 0.1 meters. Examples of the blurred images dmn)are shown in

Figure 3(a)-(d). The blurred images were then converted to mean photon

counts and subjected to a Poisson noise process: each pixel was replaced

with a sample drawn from a Poisson distribution with mean and variance equal
to the mean photon count, resulting in the noisy degraded images imn(k)

A point of reference for the amount of photon noise present in the data

is given by an analysis done by B. L. McGlamery [7]. He assumed that the

16



Figure 2. The reference oLject.

Figure 3. Degraded images. (A)-(D) Noise-free blurred images; degraded
(blurred and noisy) images ... number of photons per degraded images:

(E)-(H) 305,000; (1)-(L) 6143; (M)-(P) 643.

17



short-exposure blurred images were obtained with a system having the follow-

ing parameters:

1.6 m = telescope diameter

5 msec - exposure time

100 nm - spectral bandwidth

550 nm . center wavelength

0.8 a atmospheric transmittance

and assuming a 59000K spectral curve for the solar irradlance, and an S20

sensor spectral sensitivity curve. For the P72-2 object (Figure 2) at a mag-

nification equivalent to a distance of 300 kin, the blurred images (reflec-

tance maps) were multiplied by a constant of value 2779 to convert the image

to a mean value of photoelectrons/pixels (mean photon counts). We refer to

this constant for converting reflectance into mean photoelectrons as the

photoelectron scale factor. The value of 2779 pertains to the system and

exposure time described above, which was considered to be realistic for ob-

serving satellites (although the spectral bandwidth of 100 nm may be con-

sidered to be too high by as much as a factor of two). Using 156 blurred

images, this case serves as a baseline. For other cases there would be

greater or fewer photons available according to the reflectivity of the ob-

ject and the values of the parameters listed above. The net effect on the
photon noise of all of these factors was simulated by lumping them all into

one number, the photoelectron scale factor. For our experiments the photo-

electron scale factor was varied between 6 and 55580 which is equivalent to

between 0.002 times and 20 times the number of photons for the baseline case.

The values of the photoelectron scale factor that were used are 55580, 27790,

13895, 5558, 2779, 1390, 556, 278, 139, 56, 28, 14, and 6.

Examples of the noisy, degraded images, including both the blurring due
to the atmosphere (and the telescope aperture) and photon noise, are shown

in Figure 3.

This simulated speckle data was then processed by the Labeyrie method

[1], as modified by Goodman and Belsher [8] and later by others [9], to ar-

rive at an estimate of the modulus of the Fourier transform of the object:

18
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F156 2 ,1/2

EÎ I I5 (k) -N
A I W p j
Fpq pq 156 2 (7)

where

Nc ='FE ik ) = (k) (8)
k mn k 00

is a constant equal to the total number of photons detected [8, 9],

' S k) 2  is the square of the MTF of the speckle interferometry pro-

cess, and Wpq is a weighting factor. ExampTes of 1P pq are shown in

Figure 4. The subtraction of Nc eliminates one particular constant noise

term due to photon statistics. Other noise terms remain. If the sensor is

operating in a photon-counting mode, then Nc can be calculated from Eq.

(8) as it was for our experiments; otherwise, Nc can be estimated as the

minimum value of F'1I(k) I at high spatial frequencies. In a real-Pq

world situation, it may also be necessary to compensate for the MTF due to

the detection process before subtracting Nc [10]. In the real world an

estimate of the MTF in the denominator of Eq. (7) can be obtained from mea-

surements on an unresolved star or determined from a model of the atmosphere.

For this experiment the intent was to separate out the effects due to photon

noise alone, so the exact MTF was used. Division by the MTF also compensates

for the MTF due to the telescope aperture, resulting in a net system transfer

function that is unity within a circle of radius equal to twice the radius

of the telescope aperture, and is set to zero outside that aperture. The

result would be a system impulse response having undesirable negative side-

lobes. The weighting function Wpq was included in Eq. (7) in order to re-

store the natural MTF associated with a telescope having a circular aperture

(that MTF being the autocorrelation of the circular aperture), and the re-

sulting system impulse response no longer has negative sidelobes. The unde-

graded image shown in Figure 2, which we refer to as the reference object,

was also subjected to the same weighting function in the Fourier domain to

impose on it the transfer function of the telescope aperture. The radius of

19
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Figure 4. Fourier modulus estimates computed from 156 degraded images each.
Number of photons per degraded image: (A) infinity (noise-free); (B) 305,000;

(C) 6143; (D) 643.
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Wpq was 62 pixels, corresponding to the MTF of a telescope of diameter 1.6

meters.

An indication of the signal-to-noise ratio of the Fourier modulus esti-A
mate IFpqI can be obtained from the total number of photons detected,

Nc, Values of Nc for the Fourier modulus estimates were varied from 9.5

x 1O8 for the lowest noise case (photoelectron scale factor = 55580) to

1.O x 5 for the highest noise case (photoelectron scale factor = 6).

Since 156 degraded images were used to compute the Fourier modulus esti-

mates, this corresponds to a range of 6.1 x 106 to 643 photons per de-

graded image. Since each blurred image extended over an area of about 64 by

64 pixels, this corresponds to a range of 1490 to 0.16 photons per pixel per

degraded image over the area of the degraded image. For the baseline case

having a photoelectron scale factor of 2779, the value of Nc was 4.7 x
75

10 , which is equivalent to 3 x l0 photons per degraded image, or 74

photons per pixel per degraded image over the area of the degraded image.

Although it would not be measurable from telescope data, for our computer

simulations we also computed the actual mean-squared error of the Fourier

modulus estimate-

2 pq F pq - IFpq I)?
E A (9)IFK IFpql'

pq

where Fpq is assumed to include the weighting factor W pq. A plot of

EIl, the rms error of the Fourier modulus estimate, versus the number of

photons per degraded image is shown in the upper curve of Figure 5.

Since the signal-to-noise ratio of the Fourier modulus estimate tends to

decrease with increasing spatial frequencies, one would hope to reconstruct

low-frequency (low resolution) features of an object even under very noisy

conditions for which the high-frequency information is lost. For this rea-

son, reconstruction experiments were also performed on low resolution ver-

sions of the Fourier modulus estimates. Formation of low resolution versions

of IPI were accomplished by replacing the radius-62 W in Eq. (7) by a
pq

Wpq of the same form, but of radius 16 pixels (i.e., approximately four

times coarser resolution than the baseline "high resolution" version). The
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lower curve in Figure 5 shows E IA versus the number of photons per de-
l --1A

graded image for the low resolution version of IF I. The fact that the curve

for the low-resolution case is below that of the high-resolution case (that

is, the error of the Fourier modulus estimate is lower) confirms the notion

that the error increases with increasing spatial frequencies.

3.2 IMAGE CONSTRUCTION RESULTS FROM NOISY FOURIER MODULUS

Image construction by the iterative method (as described in Section 2)

was carried out on 13 high-resolution and 8 low-resolution Fourier modulus

estimates which were generated in the manner described in Section 3.1. In

each case, although useful images were usually available after about 100

iterations, 600 iterations (the same sequence of iterations for all cases)

were carried out in order to ensure that the convergence of the algorithm

was as complete as was practical.

The rms error E0 , which is a measure of how well the constructed image

agrees with the object-domain constraints and Fourier modulus estimate, was

reduced to about 0.007 for the lowest-noise case, to 0.05 for the median-
noise case, and to 0.4 for the highest-noise case. In no case was E°

driven to zero; that is, in no case did the algorithm converge to a solution

that was in perfect agreement both with the Fourier modulus estimate and with

the object's nonnegativity constraint. Such agreement would be impossible

because the noise present in the Fourier modulus estimate makes that estimate

inconsistent with the object's nonnegativity constraint. In particular, if

the corresponding estimate of the object's autocorrelation is computed by
A 

2 ,Fourier transforming I F 2
, that autocorrelation estimate is found to have

regions of negative values. It can easily be shown that an autocorrelation

with negative values can arise only from an object with negative values.

That is, there can be no nonnegative (physical) object that could give rise

to the Fourier modulus estimate I 1. (In addition, even if the estimate of

the object's autocorrelation were nonnegative, then it is still possible that

there would be no nonnegative object giving rise to it. Although we do not

know in general how to tell if a given function is an autocorrelation func-

tion, it can be shown that not all nonnegative symmetric functions are auto-

23



correlation functions, and a sum of autocorrelation functions is not neces-

sarily an autocorrelation function.) Nevertheless, this iterative image

construction method, which relies on the nonnegativity of the solution and

strives toward a nonnegative solution, finds a solution that has a minimum
amount of negative values; in doing so, it constructs an image that is (at
least for cases where only a moderate amount of noise is present) a good ap-

proximation to the original object.

The image construction results are shown in Figure 6 and 7 for the high-
resolution and low-resolution cases, respectively. Images that came out in-

verted (rotated in the plane of the page by 180') were re-inverted in order
to take on the same orientation as the reference object. Inverted solutions

are always possible since the Fourier modulus of f(-x) equals the Fourier

modulus of f(x), for f(x) real valued. Figure 6(E) shows the result for the

baseline case. In the high-resolution case, a good quality image, Figure

6(H), was constructed for a photon count (signal-to-noise ratio) ten times

worse than the baseline case. A degraded but still recognizable image, Fig-

ure 6(K), was constructed for a photon count one hundred times worse than
the baseline case. At four hundred times worse photon count than the base-

line case, Figure 6(H), it appears that no useful image information remains.

Also shown for comparison in Figures 6(N)-6(U) are short-exposure images
with no atmosphere present (diffraction-limited and photon-limited) for the

eight lowest signal-to-noise ratio cases, corresponding to Figures 6(F)-6(M),

respectively. From this it is seen that a single short-exposure image with
no atmosphere present is better than an image constructed from the Fourier
modulus estimate based on 156 short-exposure images. One might also wish to

compare the image construction results with the sum of 156 photon-limited
images with no atmosphere present. For the lowest signal-to-noise ratio case

having photoelectron scale factor of 6, the sum of 156 images would be the

same as a single image of photelectron scale factor of 936 = 6 x 156, which

corresponds to a result half way between Figures 6(N) and 6(0).

The low resolution results shown in Figure 7 are for the eight lowest
signal-to-noise ratio cases only. Comparing Figure 7 with Figure 6(F)-6(M),

for the same number of photon counts, Nc, the constructed images appear to

be less noisy in the low-resolution case than in the high-resolution case.
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Figure 6. (A) Reference object; (B)-(M) images constructed from Fourier
modulus estimates, corresponding to the data points in Figure 5 for the
high resolution case, excluding the lowest noise case. The baseline case
is (E). Each third image corresponds to a factor of 10 in number of

photons detected.
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Figure 6. (N)-(U) Photon-limited short-exposure images with no

atmosphere present (see text).
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Figure 7. (A) Low resolution version of reference object; (B)-(I) imagesconstructed from low resolution versions of the Fourier modulus estimates,
corresponding to the data points in the lower curve of Figure 5.
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It should be noted, however, that in the high-resolution case, the noise in

the constructed image is mostly in the higher-frequency details, and the

lower-frequency components (the coarser details) of the constructed images

remain more faithful than the higher-frequency details. Based on just their

low frequency content (coarse details), the high-resolution and low-

resolution cases appear to be comparable.

Although it would not be measurable from telescope data, for our digital
simulations we computed the actual mean-squared error of the constructed im-

age, since we have available the reference object. Before this mean-squared

error can be computed, the constructed image must be brought into coincidence

with the reference object, since the constructed image may be translated and

even spatially inverted relative to the reference object [2]. The choice of

whether to invert the image and what translation is required was determined

by successively computing the cross-correlations of the reference object with

the constructed image at normal and inverted orientations, and searching for

the maximum over the two cross-correlations. Inversion of the image (when

necessary) was effected by conjuqating its Fourier transform, and translation

of the image was accomplished by multiplying its Fourier transform by a lin-

ear phase factor. The resulting constructed complex Fourier transform G pq

was used to compute the mean-squared error

G' F' 2
-2 = p q - pql

E pq (10)
F IF pq1

pq

which is equivalent to the mean-squared error defined in the image domain as

S(Cgmn- fmn)
2

E2= m -r2 (1r)

mn m

where gn is the translated and possibly inverted version of the con-
mn

structed image. In Eqs. (10) and (11) the reference object fmn and its

Fourier transform are assumed to have been subjected to the same weighting

function Wpq as the Fourier modulus estimate.
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The rms error of the constructed images, ?', is shown as a function of

EIP1 , the rms error of the Fourier modulus estimate, in Figure 8, which

shows that E appears to vary approximately as the square root of E A

This approximate square root relationship was not expected - no theoretical

results are known that predict this relationship. For a given Fj E is

approximately the same for the low resolution cases (triangles) as for the

high resolution cases (circles). Therefore, except for possible savings in

computation time there does not seem to be any advantage to low-pass filter-

ing the data before applying the iterative algorithm. A more sophisticated

filter such as Wiener filter could, on the other hand, prove advantageous.

For the low noise cases E did not go below 0.1 although the square root
of E A was well below that level. The cause of this error in the low

IF

noise cases seems to have resulted not from the noise but from the stagnation

of the algorithm at an image that perhaps is at a local minimum of error,

but not at a global minimum. These images look like the reference object

with a low contrast sinusoidal pattern superimposed (or as stripes across

the image). Figures 9(a)-9(d) show four different images constructed from

the same Fourier modulus estimate (Nc = 9.5 x 108), each arrived at by

the same sequence of iterations but with different arrays of random numbers

as the initial input to the first iteration. The stripes appear in each im-

age, but with different orientations and spatial frequencies. This pheno-

menon was noticed earlier [2], but a complete explanation of it has not been

available. Further discussion of this phenomenon is given in Section 5.

Also shown in Figure 9 are four different images constructed from the same

Fourier modulus for a higher noise case (Nc = 9.5 x 10 6). In this case

the stripes do not occur; but a noticeable amount of random noise occurs in

the background of the images, and the details of that noise are different

for each constructed image.

The image construction results shown in Figure 6 were arrived at from

initial inputs consisting of random numbers. In addition, images were also

constructed usinq the reference object as the initial input. Although such

an initial input is unrealistic from the point of view that in the real world

the reference object would not be known, those image construction results

were interesting because they shed some light on the problem of the stripes.
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Figure 9. Four images constructed using different starting inputs.
(A)-(D) Low noise case (6.1 x 106 photons per degraded image) showing
stripes; (E)-(H) higher noise case (6.1 x 10 per photons per degraded
image). These pictures were intentionally overexposed in order to em-

phasize the stripes and the background noise.
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When starting with the reference object as the initial input, we have some-

thing that is not in perfect agreement with the noisy Fourier modulus esti-

mate. As the iterations progress, the output image departs from the refer-

ence object while becoming in better agreement with the Fourier modulus esti-

mate. Finally, the iterations stagnate at a point where the result is in as

good agreement as possible with the simultaneous constraints of object non-

negativity and Fourier modulus equalling the Fourier modulus estimate.

For the medium to high noise cases, the constructed images resulting from

the reference object as the initial input were comparable to the constructed

images resulting from random numbers as the initial input; in addition, the

error measures E and E were comparable for the two cases. For the low

noise cases, the constructed images resulting from the reference object as

the initial input were comparable in appearance to the constructed images

resulting from random numbers as the initial input except that no stripes

were present. In addition, both the error measures E and E were consider-

ably less than the values for the case of the random initial Input. E for

this case is plotted in Figure 8 along with the case of the random initial

input, where it is seen that ?' approaches zero as E1'I approaches zero, as

one would expect. For the four lowest noise cases, the error E for the

case of the random initial input versus the case of the reference object as

initial input was 0.00737 vs 0.00333, 0.00748 vs 0.00391, 0.00794 vs 0.00526,

and 0.0114 vs 0.00933. For higher amounts of noise was comparable in

ri the two cases. Therefore, for the low noise cases one can distinguish the

local minimum having stripes from the global minimum not having stripes by

the value of the rms error Eo .  It is this fact that a smaller error Eo

occurred for the constructed image not having stripes that leads us to be-

lieve that the stripes represent a problem of encountering a local minimum

and do not represent a fundamental uniqueness problem.

The most important result from this set of experiments on the noise pro-

perties is that as the noise increases, the quality of the constructed images

degrades in a gradual and predictable manner. Furthermore, the quality of

the constructed images is very good for the realistic signal-to-noise ratios

expected for imaging satellites. Images of this quality were obtained in

spite of the fact that Wiener filtering was not performed. By adding a post
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processing step of Wiener filtering the images, improved image quality may
be expected.
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4
UNIQUENESS OF IMAGES CONSTRUCTED FROM FOURIER MODULUS

It is well known that for the one-dimensional case the Fourier modulus

is usually ambiguous [11]. That is, there may be many objects that have the

same Fourier modulus. Going further, there may even be many real, nonnega-
tive objects that have the same Fourier modulus. One therefore might ques-

tion why one should even attempt to construct an image from Fourier modulus

data if one could get many different solutions. Fortunately the one-

dimensional analysis does not carry over into two dimensions, and, as will

be shown later, the solution almost always is unique for the two-dimensional

case. In Section 4.1 the previously known theory is briefly reviewed and
new experimental construction results are shown in Section 4.2 for a variety

of objects.

4.1 UNIOUENESS THEORY

We first consider the one-dimensional case, although the problem in which

we are most interested is two-dimensional. Switching to continuous vari-

ables, the Fourier transform relationship, of which Eq. (1) is a discrete

form, is

I0I

~i2.fux
F(u) .rf(x)e -  dx (12)

If f(x) is of finite extent, that is, if it is zero outside a finite in-
terval [a, b], then the function F(z) is an entire function (analytic every-

where) of exponential type. The variable z is a complex variable of which u

is the real part. Such functions are completely specified by their complex

zeroes zi, i - 1, 2, ... , satisfying F(zi) = 0. In particular, from the

Hadamard factorization theorem we have [12]

F(z) - A rI (1 - z/zi) (13)
i=1

where A is a constant and q is the order of the zero at z = 0.
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Th eason that the one-dimensional case is usually not unique is as

follow=. In theory, since F(z) is analytic, given any finite segment of

F(z), F(z) can be determined everywhere by analytic continuation. Similarly,

since F(z) is analytic, so is F(z -F(-z), which is equal to IF(u)1 2 on the

real line. (The overbar indicates complex conjugation.) Therefore, given

IF(u) 12 it is theoretically possible to determine the complex zeroes of

F(z)F(z). If the complex zeroes of F(z) were known, then Eq. (13) could be

used to determine F(z) and in particular F(u). However, for each zero z i
of F(z), F(z)F(-z) = 0 both at z i and at -zi Therefore for each non-

real-valued complex zero of F(z) there is a two-fold ambiguity of the solu-

tion. If there are m complex zeroes then there would be 2 m- different

solutions, and in general m is infinite. In general it is not known, how-

ever, what number of solutions are nonnegative.

Although the uniqueness problem is very severe in the one-dimensional

case, it fortunately does not appear to be a problem in the two-dimensional

case. Bruck and Sodir [13] analyzed the case of an object made up of an ar-

ray of delta-functions. The Fourier transform then reduces to a discrete

sum, and the discrete sum can be shown to be equivalent to a polynomial of

complex variables. The zeroes (roots) of the polynomial are associated with

the complex zeroes discussed above. It can then be shown that the ambiguity

of the solution is determined by the number of factors into which the poly-

nomial can be factored. In the one-dimensional case a polynomial can always

be expressed as the product of m prime factors, where m is equal to the order

of the polynomial, which is equal to the number of discrete points across
rn-1

the object. Therefore, for the one-dimensional case there are 2 solu-

tions. On the other hand, two-dimensional polynomials are rarely factorable.

Therefore, for the two-dimensional case the solution is usually unique (to

within a 1800 rotation and a translation).

It can be argued that this analysis can be extended to the case of a con-

tinuous, extended object (as opposed to a sampled object) by noting that F(z)

for a continuous object can be closely approximated by a polynomial [14].

Therefore, although further analytical work is required to definitively an-

swer the question of uniqueness for continuous objects in two-dimensions,
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one would expect the solution to be generally unique (except for ve! , Z-pecial

cases) in two dimensions.

Fried [15] has considered the special case for which the Fourier trans-

form is separable in its two orthogonal coordinates, that is, it can be

written as the product of two one-dimensional functions (and if the Fourier

transform is separable, then so is the object function). This case can be

shown to have a high degree of non-uniqueness. The high degree of ambiguity

is expected since the separability condition changes the two-dimensional

problem into two one-dimensional problems, and the high degree of ambiguity

is well known in one dimension, as discussed earlier.

Fried [15] goes one step further and shows how to generate an arbitrary

number of nonnegative (one-dimensional or separable two-dimensional) func-

tions having the same Fourier modulus. He has since found that the functions

generated by his method tend to be smooth

4.2 UNIQUENESS EXPERIMENTS

The uniqueness of the solution was empirically tested on several differ-

ent objects in order to provide a practical answer to the uniqueness

question.

Digitized photographs of several different satellites were provided to

ERIM by B.L. McGlamery (Visibility Laboratory, U.C. San Diego). Since it

was suspected that the uniqueness property may depend on the complexity of

the object, we computed several versions of each satellite, each version at

a different resolution (at a different magnification). The lower resolution

versions provided examples of less complicated objects.

The method of generating lower resolution versions was to resample the

fine resolution images on a coarser grid. Points on the coarser grid that

fell between the points on the finer grid were given values according to a

two-dimensional separable triangular filter operating on the four nearest

neighbor points on the finer grid. This type of resampling does not give an
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JewagnifiatiJ -n it h.: s a tendency to overemphasize some features

object .;,d :- otr.ers. However, for the purpose of these experiments

ar -:curatv demaqnif,-<.io was not ^eauired; it was only desired that a

smaller, less complicated object be synthesized.

The objects used are listed in Table 1. In order to avoid the possi-

bility of aliasing, the objects were initially all scaled to fit within a

square of size 64 by 64 pixels, which was imbedded in an array of size 128

by 128. The magnification factors required for the initial scaling are

listed in Table 1. If a telescope of diameter 1.6 meters and a wavelength

of 550 nm were used, and the image sample size were equivalent to ()/2D) =

550 nm/3.2 m = 1.719 x l0- 7 radians - 0.03545 are-sec per pixel, then the

apparent distances corresponding to the objects of size 64 pixels are given

by (image scale in meters per pixel) (2D/x), which are listed in the last

column of Table 1. In addition to objects of size 64 pixels, objects of size

32, 16, 8 and 4 pixels were ge-arated using the resampling method described

above. That is, a total of 40 test objects (8 objects at 5 magnifications

each) were used in the experiments. The smaller, lower-resolution objects

can be thought of as being at proportionally greater distances from the tele-

scope. Because of the way that the resampling was done, the objects "of size

4 pixels" are in fact only 3 pixels across; in addition, except for the Film

No. 508 and 608 cases, one pixel dominates the others; conseauently, the ob-

jects of size 4 pixels tend to look very much like single point scatterers.

The Fourier modulus data for each test object was generated by Fourier

transforming the test object, then multiplying the complex Fourier transform

by W, the weighting function due to a circular telescope aperture, and then

taking the modulus (or magnitude). The weighting function is given by the

autocorrelation of a circular aperture of diameter 62 pixels in the Fourier

domain. For this set of experiments the effects of diffraction due to the

telescope aperture were included, but the Fourier modulus data was otherwise

free of error. For comparison with the construction results, the inverse

Fourier transform of the weighted complex Fourier transform was computed.

The resulting image, which is referred to as the reference object, is equiv-

alent to a diffraction-limited image of the object.
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The same set of 340 iterations as discussed in Section 2 was us el ,

of the forty test cases. Figures 10 to 17 show the reference obje and a

corresponding constructed image for all forty cases. Images that came out

inverted were re-inverted in order to take on the same orientation as the

reference object.

A problem that occurred was that the algorithm usually did not convergp

completely to a solution: it usually stagnated at a local minimum at whicn

it produced an image of qood quality but with a set of stripes superimposed

across the image. When the algorithm stagnated at such a local minimum, it

was not possible to determine with certainty whether the solution it was con-

verging toward was exactly the same as the reference object. As discussec

in Section 3, the stagnation at an output image havinq stripes is most likely

a problem of algorithm staqnation at a local minimum of E0 and does not

represent a uniqueness problem. In almost all of the different constructed

images shown in Figures 10-17, the primary difference between the constructed

image and the reference object is the presence of the stripes. Therefore we

conclude from those cases that if the algorithm were improved in such a way

as to avoid stagnation with stripes, then it would probably converge to an

output image identical to the reference object. That is, these results imply

that for most cases the solution is unique.

The stripes are usually more difficult to see when reproduced than they

are when the image is viewed on a T.V. monitor, which has greater dynamic

range than a paper print of the imaae. Usually there is a single set of

stripes across the image. In any given image the stripes have an average

period and anqular orientation, but across the image the stripes vary signif-

icantly about those averages. In some cases, more than one set of stripes

appear in a given image; for example, in Fioure 12(B) there are strong (high

contrast) stripes both horizontally and at about a 45 degree angle. The

stripes extend over the entire field-of-view but have maximum contrast over

the extent of the object. The fact that the stripes extend beyond the known

extent of the object (which is half the diameter of the autocorrelation) will

probably enable us, some time in the future, to develop an algorithm to de-

tect them and eliminate them.

38



lists the rms error Eo, as defined by Eq. (5), for the forty

t ed 1 mages. This is a measure of how well the constructed image

aarees with the simultaneous constraints of nonneqativity and having a

Fourier modulus equal to the Fourier modulus of the reference object; that

is, it is a measure of how close it is to a solution. For a given size of

object, constructed images with larger values of E are known to be

farther from a solution. Therefore, for example, the 32-pixel size and

16-pixel size constructed images of Film No. 302 shown in Figures 12(D) and

(F) should probably be ignored because they are much farther from solutions

than are the constructed images for the other objects (and so they are not

necessarily an indication of non-uniqueness).

If the cases that did not converge very close to a solution (having large

values of E ) are ignored, and if perturbations due to stripes are ig-

nored, then most, but not all, of the image construction results shown in

Figures 10-17 seem to indicate that the solutions are unique. The most dis-

turbing departure from uniqueness came in the case of the 64-pixel size of

Film No. 401, FLTSATCOM. The constructed image has the same overall shape

as the reference object but differs from it in its details, despite the fact

that for this object an additional 380 iterations were performed. Subsequent

runs of the algorithm using different starting inputs encountered similar

problems for this object. From Figure 14(A) one can see that for this par-

ticular object its bright central part is nearly circularly symmetric. Since

a circularly symmetric object can be described as a function of a single

variable, its radial coordinate, one could hypothesize that such objects

would have the same high dearee of ambiguity as one-dimensional objects, but

this is not known. Therefore, although most objects of interest are probably

unique, there appear to be special classes of objects for which the solution

is not unique. From the results shown in Figures 10-17 it appears that the

non-unique (ambiauous) cases are the exceptions rather than the rule.
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TABLE 1
OBJECTS FOR UNIQUENESS STUDY

Unscaled Magnification Apparent-Distance
Film Pixel for 64-Pixel for 64-Pixel
No. Object Description Size Width Width (km)

204 P72-2 Sensor Testbed (A) 0.0174m 0.267 379

205 P72-? Sensor Testbed (B) 0.0174m 0.267 379

302 777 Communications Sat(A) 0.0174m 0.267 379

314 777 Communications Sat(B) 0.0174m 0.279 363

401 FLTSATCOM 0.0581m 0.250 1352

509 LST (A) 0.0871m 0.356 1423

508 LST (B) 0.0871m 0.291 1741

608 SURVSATCOM O.116m 0.356 1896

TABLE 2
RMS ERROR Eo OF CONSTRUCTION RESULTS FOR

UNIQUENESS STUDY

Object Object Size (Pixels)
(Film No.) 64 32 16 8 4

204 0.0327 0.0234 0.00914 0.00051 0.00048

205 0.0262 0.00421 0.00074 0.00058 0.00049

302 0.0189 0.0553 0.0154 0.00071 0.00053

314 0.0156 0.00268 0.00813 0.00164 0.00055

401 0.00240 0.00101 0.00061 0.00050 0.00048

509 0.00782 0.00660 0.00072 0.00053 0.00048

508 0.00296 0.00179 0.00197 0.00071 0.00048

608 0.00368 0.00169 0.00073 0.00100 0.00054
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Figure 1 . Reference oojpcts and constructed images for Film No. 205,
P72-2(B). Reference object and constructed image for (A, B) 64-pixel
width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel

width, and (I, J) 4-pixel width.
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Figure 12. Reference objects and corst-,xi L2d irndges for F'i'lm No. 302,
777(A) . Reference object and constructed image for (A, 9) 64-pixel
width, (C, 0) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel

width, and (1, U) 4-pixel width.
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Figure 13. Reference objects and constructed images for Film No. 314,
777(B). Reference object and constructed image for (A, B) 64-pixel
width. (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel

width, and (I, J) 4-pixel width.
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Figure 15. Reference objects and constructed images for Film No. 509,
LST(A). Reference object and constructed image for (A, B) 64-pixel
width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 9-pixel

width, and (1, J) 4-pixel width.
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Figure 16. Reference objects and constructed images for Film No. 508,
LST(B). Reference object and constructed image for (A, B) 64-pixel
width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel

width,and (I, J) 4-pixel width.
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Fiou r e 17. Reference objects and constructed images for Film No. 608,
SURVSATCOM. Reference object and constructed image for (A, B) 64-pixel
wijdth, (C, D"' 32-pixel width, (E, F) 16-ovixel width, (G, H) 8-pixel

width, and (I, J) 4-pixel width.



5
ALGORITHM CONVERGENCE

Several different aspects of the convergence of the algorithm are of in-

terest. A few variations of the algorithm were compared for convergence

speed. Investigations were made into the convergence speed as a function of

object complexity and of Fourier modulus signal-to-noise ratio. Attempts

were made to cause the solution to move away from a local minimum character-

ized by the stripes discussed in Sections 3 and 4.

5.1 COMPARISON OF DIFFERFNT ALGORITHMS

Four different versions of the algorithm were compared. All four ver-

sions use the same first three steps described in Section 2. They differ in

the method in which the new input gK+l is chosen. The first method, which

we call the error-reduction approach, is given by Eq. (2) in Section 2:

gkm '(m, n) -y

gk+l,mn (14)

0, (m, n) £ y

where gk,mn and g'k,mn are the input and output, respectively, at the

kth iteration and y is the set of points at which violates the

object-domain constraints. The principal object-domain constraint is that

g' be nonnegative everywhere; an auxiliary constraint is that the extent

(diameter) of the object not exceed the known diameter which is half the

diameter of the given autocorrelation. For the error-reduction approach the

new input is equal to the current output modified to satisfy the object-

domain constraints. Satisfying the object domain constraints consists of

setting the output to zero wherever it violates the constraints. In Appendix

A is a proof that the error reduction approach converges in the sense that

the mean squared error, as defined in Eqs. (4) and (5) in Section 2, is mono-

tonically decreasing with each successive iteration.

In addition to the error-reduction approach, three different versions of

the more general input-output approach were investigated. The basic idea
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behind the input-output approach is that the first three operations of the

algorithm - Fourier transformation, satisfaction of Fourier-domain con-

straints, and inverse Fourier transformation -- can be viewed as a nonlinear

system having an input g and an output g'. By appropriate changes in the

input one attempts to drive the output to satisfy the object-domain con-

straints. Since the output by definition satisfies the Fourier-domain con-

straints, it is a solution to our problem if it can be made to satisfy the

object-domain constraints.

For a problem very similar to the one at hand, it has been shown that

for small changes in the input, the expected value of the corresponding

change in the output is a constant, a, times the change in the input [4].

Since additional nonlinear terms also appear in the output, the change in

the output due to a particular change in the input cannot be predicted ex-

actly. Nevertheless, by appropriate changes in the input, the output can be

pushed in the qeneral direction that is desired. If a change ag is de-

sired in the output, then a logical choice for a change in the input to

achieve that chanqe in the output would be BAgmn, where B is a constant

ideally equal to c . For the problem at hand, the desired change in the

output is

0, (m, n) -y

Agmn = (15)

-g mn ' (m , n ) c -y

that is, where the constraints are satisfied one does not require a change

of the output, but where the constraints are violated, the desired change in

the output is one that drives it to a value of zero (and therefore the de-

sired change is the negative of the output at those points). Therefore a

loqical choice for the next input is g + s&g, that is,

,mn' (m,n)4 y
ggk ,mnn

gk,mn - Bg'k,mn,(mn) y

We will refer to the use of Eq. (16) as the basic input-output approach.
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An interesting property of the nonlinear system (consisting of the three

steps mentioned above) is that if an output g' is used as an input, then its

output will be itself. Since the Fourier transform of g' already satisfies

the Fourier-domain constraints, g' is unaffected as it goes through the sys-

tem. Therefore, irrespective of what input actually resulted in the output

g', the output g' can be considered to have resulted from itself as an input.

From this point of view, another loaical choice of the next input is

gk,mn, (re,n) 4 y

gk+l,mn (17)

,mn g (k,mn, (r,n) r y

We will refer to the use of Eq. (17) as the output-output approach.

Note that if o - 1 in Eq. (17), then the output-output approach reduces

to the error-reduction approach of Eq. (14). Since the optimum value of 8

is usually not unity, the error-reduction approach can be looked on as a sub-

optimal version of a more general approach.

A fourth method of choosing the next input which we investigated is a

combination of the upper line of Fa. (17) with the lower line of Eq. (16):

(m,n) y

k+l,mn= (18)

gk,mn - 0g'k,mn' (mn) y

We will refer to the use of Eq. (18) as the hybrid input-output approach.

The hybrid input-output approach is an attempt to avoid a stagnation problem

that tends to occur with the output-output approach. The output-output ap-

proach often works itself into a situation in which the output on successive

iterations does not change, despite being far from a solution. For the hy-

brid input-output approach, on the other hand, if at a given pixel (m, n)

the output remains neqative for more than one iteration, then the corre-

sponding point in the input continues to grow larger and larger until even-

tually that output point must go nonnegative.
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The four approaches discussed above were compared by using them on the

same Fourier modulus data and with the same starting input. For each ap-

proach several different values of the parameter B were tried. The principal

problem with the error-reduction approach is that it tends to stagnate after

a few iterations. The starting point for the iterations was chosen to be a

partially constructed image of the Film No. 509, LST(A) object (at a 64-pixel

size), on which the error-reduction approach was making very slow progress.

Ten iterations of each of the four approaches followed by ten iterations of

the error-reduction approach (that is, a total of twenty iterations) were

performed using that same starting input. The reason that each approach was

followed by ten iterations of the errorreduction approach is that in some

cases definite prugress is being made with an input-output approach even

though the rms error gets worse with each iteration. The relationship be-

tween the rms error and the visual image quality is not fully understood,

although of course one would expect a high degree of correlation between the

two. For the approaches for which the rms error does not seem to be a good

indication of the image quality, we found that the rms error could be made

to be a good measure of the image quality by performing a few (say ten) iter-

ations of the error-reduction approach on the results of the input-output

approach.

Figure 18 shows a plot of the rms error after the twenty iterations for

each of the input-output approaches as a function of the parameter B. Recall

that the output-output approach with B = 1.0 is equivalent to the error

reduction approach. Figure 18 shows that the hybrid input-output approach

is superior to the others in this case, and that the optimal value of B is

about unity.

The manner in which the diameter constraint (limiting the diameter of

the constructed image to half the diameter of the autocorrelation) was im-

posed was found to have a sianificant impact on the convergence speed. At

the beginning of this program the strategy for applying the diameter con-

straint was to impose it very loosely (i.e., allow the image to have a larger

diameter) for the early iterations, then tighten up the diameter for later

iterations after the image distribution became better confined to an area of

the desired size. This strategy helped to avoid the previously encountered
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Figure 18. Rms error, E0 , after sequence of 20 iterations versus

algorithm parameter 0 for the basic input-output approach (A), the
output-output approach (o) and the hybrid input-output approach (x).
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problem of having the diameter constraint inadvertently chopping off an edge

of the desired image. It was discovered that reversing the sequence resulted

in an increase in convergence speed: apply a very tight diameter cons.traint

for the early iterations, and loosen that constraint as the iterations pro-

gress. This strategy helps to move energy from the regions clearly outside

the object's support to within the objects support during the early itera-

tions. This results in a convergence speed-up by as much as a factor of two.

5.2 DATA DEPENDENCY OF CONVERGENCE

The convergence speed of the algorithm depends both on the complexity of

the object and upon the signal-to-noise ratio of the Fourier modulus data.

The most convenient scale by which convergence is measured is the rms error

E or EF, both of which are consistently meaningful only after a few

iterations of the error reduction approach are performed.

The data qenerated during the studies of the noise properties of the con-

structed images show that the number of iterations required was the least

for the data of the lowest signal-to-noise ratio. For the data having the

very worst signal-to-noise ratio (photoelectron scale factor = 6), only a

few iterations were required for convergence. That is to say, after just a

few iterations no further proqress could be made although Eo was still

large, and the solution had gone as far as it usefully could. For the higher

signal-to-noise ratio cases, additional iterations further reduced the rms

error, so in that sense the convergence time was longer.

The data qenerated durinq the studies of the uniqueness of the solution

showed that the objects of lesser complexity (smaller magnification) con-

verged to lower values of rms error E after fewer iterations than the

more complex objects. However, the total number of iterations performed be-

fore the algorithm stagnated showed only a weak dependency on object complex-

ity. For the cases of low object complexity stagnation occurred at consid-

erably lower values of E0 than for cases of higher object complexity, but

stagnation tended to occur sooner for cases of low object complexity.
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5.3 THE STRIPES PHENOMENON

As mentioned in Sections 3 and 4 the algorithm often stagnates at a local

minimum characterized by a pattern of stripes across the image. In most

cases the stripes are barely noticeable and are of low contrast superimposed

on an otherwise excellent constructed image. In some cases the stripes are

of high enough contrast to be objectionable, although they still permit the

object to be recognized. As shown in Section 3, different starting inputs

converqe to images having stripes of different angular orientations and

spatial frequencies (periods). There seems to be a tendency for the stripes

to be oriented at the same angle as a prominent feature of the object. The

stripes extend over the entire field-of-view, beyond the known diameter of

the object. The contrast of the stripes tends to be greater over the extent

of the object and less outside the extent of the object, The stripes appear

only when the signal-to-noise ratio is high.

We believe that the existence of the stripes does not represent a funda-

mental uniqueness problem. When the algorithm staqnates on an output having

stripes, the rms errors F0 and EF are never zero, and so it is known

that it is not exactly a solution, although it is usually close to a solu-

tion. If the algorithm happens to find the solution free of stripes, then

the rms error E is lower than for the case having stripes, providing a

way to distinguish the correct solution from the .olution having stripes.

In addition, since a valid solution cannot have a diameter exceeding half

the diameter of the autocorrelation, the fact that the stripes extend beyond

that diameter provides a way to distinquish the correct solution from a so-

lution having stripes.

For the one-dimensional case it is known that if a single pair of complex

zeroes is moved (to locations other than their conjugates) around symmetri-

cally in the Fourier complex plane, then the result in the image plane can

be a function similar to the original but having a sinusoid added over the

interval of its support r121. This particular operation results in a Fourier

transform with a Fourier modulus different from the original Fourier modulus;

therefore the new object created does not cause a problem of uniqueness.

Furthermore, this one-dimensional analysis does not carry over directly into
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two dimensions. Nevertheless, this one-dimensional phenomenon might ulti-

mately be connected in some way with the stripes phenomenon.

An attempt was made at moving away from the constructed image having

stripes. After the algorithm converged to an image having stripes and seemed

to stagnate there, random noise was added to the image and then further iter-

ations were performed. It was found that the algorithm quickly converged

back to an image with essentially the same stripes, even when large amounts

of noise had been added. Only by starting with a different initial input

having no stripes present could one converge to an image having a different

set of stripes. Further work will be necessary to develop a method of break-

ing away from stagnation at local minima having stripes.
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6
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

The results shown here indicate that construction of images by the iter-
ative method from Fourier modulus data provided by stellar speckle interfer-

ometry should prove to be successful for imaging earth-orbiting satellites.
With the levels of photon noise present in practical situations it should be
possible to construct images that are diffraction-limited in resolution.

The solution can generally be counted on to be unambiguous (i.e., unique)
except for special classes of objects, for example, objects that can be
described as separable functions. The image construction algorithm has been

developed to a point were convergence requires about 100 iterations, which
takes less than two minutes on an array processor (Floating Point System
AP-120B) for array sizes 128 by 128.

More particularly, the major results of this research effort are as fol-
lows. The rms error of the constructed images increases in a gradual and
predictable manner as the rms error of the Fourier modulus estimate in-

creases, roughly as the square root of the rms error of the Fourier modulus
estimate. For photon noise levels up to ten times worse than the baseline
case, the quality of the constructed imag3 is good. The most recent theory

of the uniqueness of the solution suggests, and our experimental results ap-
.1 pear to confirm, that the solution is usually unique for two-dimensional ob-

jects, both for ohjects of high complexity (large space-bandwidth product)

and low complexity. These results were obscured, however, by an inability
to converge completely to a solution in many cases. The algorithm has a
tendency to stagnate at a local minimum characterized by a set of stripes

across an otherwise recognizable image of the object. As the signal-to-noise

ratio of the Fourier modulus data decreases, the ambiguity of the solution
increases, but that ambiguity takes the form of noise in the constructed im-

age rather than a complete change in the basic characteristics of the image.
Fewer iterations of the algorithm were needed in the low signal-to-noise
ratio cases, but the images were correspondingly poorer. Images of greater

complexity tended to take a larger number of iterations than images of lower
complexity. The convergence speedo of the algorithm was increased by the
manner in which the diameter constraint was imposed. A comparative study of
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a few different versions of the algorithm showed that, among the approaches

tried, the hybrid input-output approach converges the fastest by a wide

marqin.

The most critical Questions have been answered successfully by this re-

search, but important aspects of the problem remain to be studied.

Althouoh useful imaqes are obtained in spite of it, the stripes phenom-

enon remains as a puzzling hindrance to the complete convergence of the al-

gorithm to a solution. Theoretical analysis is needed to understand why the

stripes occur and how they might be dealt with. Further effort should be

expended to determine ways of automatically identifying the presence of the

stripes and having the algorithm reject them. Once this problem is solved,

the uniqueness expPriments should be repeated in order to determine with

greater certainty whether the solution is usually unique.

A potential source of error not addressed in this research project is

the estimation of the MTF of the speckle interferometry process. Computer

simulations should be performed in order to determine the effect of errors

in the MTF estimate on the constructed image and whether they affect the

uniqueness of the solution. In addition, there may be situations for which

it is not always convenient or practical to obtain an estimate of the speckle

MTF from a reference star. Therefore, alternative methods of estimating the

speckle MTF should be studied and compared, including model fitting, the

Worden subtract method, and the clipping method [10].

Further development of the algorithm itself is needed to make it converge

in real time. More variations of the algorithm should be compared over a

wider range of circumstances. In addition, major modifications of the algo-

rithm may be called for. A particularly promising line of attack would be

to apply the discipline of control theory to the input-output system concept.

Image construction experiments should be carried out on actual telescope

data gathered on orbiting satellites to demonstrate its usefulness in solving

the space object identification problem and to discover what additional prob-

lems need to be overcome when handling data from a real sensor.

Comparison of the imaqe construction results from noisy Fourier modulus

data should be made both with (computer simulated) images constructed by the
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Knox-Thompson method [16 1 and with images from a compensated imaginq system.

As the reflectivity of the object decreases, there is some point beyond which

it is no longer possible to accurately sense the wavefront deformation, and

the compensated imaging system would no longer adequately correct for atmo-

spheric turbulence. However, under the same severely photon-limited case,

speckle interferometry can continue to function since it integrates ovei many

frames and can ultimately have a hiqher sianal-to-noise ratio than the com-

pensated imaging system which must correct for turbulence based on measure-

ments made over an interval of time of only a few milliseconds. Computer

simulations should be carried out on the Knox-Thompson method using the same

simulated data that was generated for the noise properties study described

in this report. Then using existing computer-simulated results for the

Fourier modulus image construction method and for compensated imaqing, a com-

parison of the three methods should be made for various levels of photon

noise. It may also be desirable to vary the turbulence parameter r0 . To

make the comparison complete, the same type of Wiener filtering should be

performed on the Knox-Thompson and Fourier modulus image construction results

as is done on the images from the compensated imaging system.

Methods of combining the imaqe construction from speckle interferometry

Fourier modulus data with compensated imaging systems should be explored.

It may be possible to have a compensated imaqing system utilize the iterative

method for those instances where low light levels hinder the ability to track

the wavefront deformation caused by the turbulent atmosphere. Experiments

both with simulated compensated images and eventually with real data from a

compensated imaging system would be needed. Most simply, the iterative

method can be thought of as another post-processing step to obtain improved

imagery from the compensated imaging system. When compensated images from

the system being developed at AMOS on Maui become available, if they are not

diffraction-limited they should be additionally post-processed using the

iterative algorithm.

For the case of tumbling or rotating objects, methods will have to be

developed to take these effects into consideration. For general time-varying

objects it may be possible to "lock on" to the image: after acquiring an im-

age at a given time, as the object changes and new data is collected, only a
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few iterations of the algorithm may be required to converge on the new image

if information about the previous image is utilized.

Methods of increasina the signal-to-noise ratio of the data to ensure

good quality constructed images should be developed. One method of increas-

inq the signal-to-noise ratio is to extend the spectral bandwidth of speckle

interferometry. A present limitation on the spectral bandwidth is the wave-

length dependence of the impulse response for a given optical path difference

caused by the atmosphere. It may be possible to create a wavelength-

independent impulse response using an optical system composed of wavelength-

sensitive optics, such as holographic optical elements.

Finally, the iterative method could be applied to a number of other prob-

lems of interest to the Air Force. It can be applied to any reconstruction

problem for which only partial information is available about an object,

wavefront, or signal and only partial information is available about its

Fourier transform. Such applications include, in addition to Fourier modulus

image construction, wavefront sensing, spectral extrapolation, and X-ray

crystallography phase retrieval. The iterative method can also be applied

to synthesis problems for which one wants both a function and its Fourier

transform to satisfy a given set of constraints or have certain desirable

properties. Such applications include spectrum shaping and the design of

lens pupil functions, antenna array phases, radar signals, and digital

filters.
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APPENDIX A
CONVERGENCE PROOF

In this appendix it is shown that for the error-reduction approach the

error monotonically decreases at each iteration.

The kth iteration begins with 9k,7n' an estimate of the object that

satisfies the object-domain constraints. First gk,mn is Fourier trans-

formed, resultina in Gk,pq Gk,pq I exP(iOk,pq) .  Then in the Fourier

domain, Gk,pq is replaced by G'k,pq = IFpq I exp(ik,pq)" The unnor-

malized mean-squared error is defined in the Fourier domain as

E 1 IG I F (Al)
EFk N (k,pql p)2

where p,q u 0, 1, ..., N-i, which can be expressed as

E 2 1 IN kpq 2 (A2)

where

Nkpq = G ,pq - Gk,pq " (IFpqI - I Gkpq I) exp(i k,pq) (A3)

Forming the new Fourier transform G'kpq and inverse Fourier transforming

results in

wr,mn 1 EG •,pq k,mn nkmn (0)

where nkmn " '-[Nkpq]

The new estimate of the object is formed by setting g'k,mn equal to

zero wherever it violates the constraints:

g m (m,n)

gk+l,mn (A5)

0, (m,n) e y
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Let gk+l,mn be expressed in terms of gk,mn as follows
+dn k  d (A6)

gk+l,mn = gkmn +dk,mn = gk,mn + k,mn +dk,mn

where
d q, n WA)

dkmn = gk+l,mn - k,mn = gk+l,mn k, - nkmn A7)

The unnormalized mean squared error in the object domain is defined as

E2k (gm)2 =-(dk,mn)2  (AS)

mncy mn

And by applying Parseval's theorem, Eq. (A2) becomes

E~k =2 (nk mn)2 (A9)

mn

In the followinq we will show that I dkmn I <_ Ink,mn I for all (m,n),

proving that E2  < E 2 (1) For (m,n) where satisfies
Ok - Fk* (1 o mn wee gk ,mn saife

the constraints Fi.e., (m,n) y], dk,mn = 0, and so Idk,mnl <_ Ink ,mn!

(2) For (m,n) where a'k,mn is negative, gk+l,mn = 0 and, from Eq. (A7)

dk,mn= - gkmn = -gk,mn - nk,mn

Since g'k,mn is negative, dkmn is nonnegative. Furthermore, since

gk,mn is nonneqative we have

dk,mn < d + gk ,mn k,mn

and so I dk mn I 5_ In k,rn 1- (3) For (m,n) where the object is known to be

zero (for the case in which the object's diameter is known and that con-

straint is imposed), gk+l,mn = gk,mn = 0, also leaving dk m = -

n k,mn; and so Idkmnl S I nk,mnl . Therefore, since I dk,mn

I nk,mn I for all (m,n), then from Eqs. (A8) and (A9) we have

E2 < E 2 (AlO)
Ok - Fk

Fourier transforming Eq. (A7),

D kpq - Gk+lpq - Gkpq (All)
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and so

I kPl2 2G~ ~q kpl 2 ,.
jD pql2= Gk+l pql + -G ,pq - 2 Re[Gkpq Gk+lpq]  (A12)

where an overbar denotes complex conjugation and Re the real part. From Eq.

(A3),

Nk+l,pq - %+l,pq - Gk+l,pq (A13)

and so

INk+lpql IG' 2+ 12 2 G(
Sk+l,pql 2 + IGk+lpq _ 2 Re[G,+l pq Gk+l,pq A

Taking the difference between Eq. (Al2) and Eq. (Al4) and using the fact that

IG'k,pql -G'k+l,pql IF pqI, we have

IDk,pq 2- Nk+l,pql2 - 2 ReEGk+lpq k+l,pq] - 2 Re[G ,pq Gk+lpq]

- 21Fpq IIGk+l,pql 1 - Cos pq] _> 0 (A15)

where o(u) . argrG' G. And therefore for all (p,q),k,pq dk+l'pq
INk+l,pq I. IDk,pql (A16)

This result can also be easily seen from the geometry of Figure Al. The re-

sult is the same irrespective of whether I k+l,pq I is greater than or less

than IF pq1. Therefore, by using Parseval's theorem on Eq. (A8) and usina

Eq. (A2), we have

2  2
F,k+l < EOk (A17)

Combining this with Eq. (AlO) gives the desired result

F,k+l - Ok .5 Fk(A8

That is, the unnormalized mean-squared error must decrease, or at least not

increase, with each iteration of the error-reduction approach. The quanti-

ties usually considered are the normalized mean-squared errors, Eqs. (4) and
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showig tha I~kl pq ,pq
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(5) Since these are s imply - oport iona] t,) the unnormal ized mean-squared

errors, Eq. (A18) also holds for the normalized mean-squared errors.

Complete staqnation of the error reduction approach could occur if

d kmn n - k,mn for all (m,n), in which case from Eq. WA) one gets

=klm km for all (m,n). Another condition of stagnation is for
apq =0 for all (p,q) in Eq. (A15).
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